Lange, P. P. M. de, Frühauf, H.-W., van Wiunkoop, M. \& Vrieze, K. (1991). To be published.
lange, P. P. M. de, Frǘhauf, H.-W., van Wifnooop, M., Vrieze, K., Wang, Y., Heiddenrijk, D. \& Stam, C. H. (1990). Organometallics, 9, 1691-1694.

Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158166.

Acta Cryst. (1992). C48, 361-362

Structure of $\left[\boldsymbol{\eta}-\mathbf{C}_{5}\left(\mathbf{C H}_{3}\right)_{5}\right] \mathrm{RuCl}_{\mathbf{2}}\left(\mathbf{N C}_{5} \mathbf{H}_{5}\right)$

By Frank Bottomley and Peter A. Sutton
Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada, E3B 5A3

(Received 15 April 1991; accepted 20 August 1991)

Abstract

Dichloro}(\eta\)-pentamethylcyclopentadienyl)(pyridine)ruthenium, $\left[\mathrm{RuCl}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right], M_{r}$ $=386.31$, monoclinic, $P 2_{1} / m, a=7.2112$ (5), $b=$ 13.430 (1), $c=8.4573$ (7) $\AA, \quad \beta=106.540$ (6$)^{\circ}, \quad V=$ 785.2 (1) $\AA^{3}, Z=2, D_{x}=1.63 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo K α) $=$ $0.71073 \AA, \mu=13.1 \mathrm{~cm}^{-1}, F(000)=390, T=295 \mathrm{~K}$, $R=0.027, w R=0.051$ for 1283 unique observed reflections $\left[I_{o} \geq 2.5 \sigma(I)\right]$. The Ru has a piano-stool coordination of $\eta-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}$, two Cl atoms and the N of pyridine $[\mathrm{Ru}-\mathrm{Cl} 2.386(1), \mathrm{Ru}-\mathrm{N} 2.150$ (5) \AA and $\mathrm{Ru}-\mathrm{C}_{5}$-ring centroid 1.819 (4) \AA].

Experimental. Orange plates of $\left[\eta-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right] \mathrm{Ru}$ $\mathrm{Cl}_{2}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)$ were obtained by treating a solution of $\left[\left\{\eta-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right\} \mathrm{RuCl}(\mu-\mathrm{Cl})\right]_{2}$ (Tilley, Grubbs \& Bercaw, 1984; Oshima, Suzuki \& Moro-oka, 1984) in tetrahydrofuran with pyridine (Bottomley, McKenzie-Boone \& Sutton, 1991). A crystal of dimensions $0.35 \times 0.15 \times 0.25 \mathrm{~mm}$ was coated with Apiezon grease, sealed in a capillary and mounted on an Enraf-Nonius CAD-4 diffractometer. Lattice constants were obtained by accurate centring of 25 reflections in the range $30<2 \theta<40^{\circ}$. Intensities were measured using the $\omega / 2 \theta$-scan mode to a $2 \theta_{\text {max }}$ of $50^{\circ}\left(h_{\max } 8, k_{\text {max }} 15, l_{\max } 10\right)$. Three standard reflections were monitored every hour; there was no significant change in their intensity. The intensities of 2590 reflections were measured and averaged to yield 1450 unique reflections ($R_{\text {int }}=0.014$) of which 1283 were judged as significant by the criterion that $I>$ $2.5 \sigma(I)$. No absorption correction was made. The structure was solved and refined using NRCVAX (Gabe, Le Page, Charland, Lee \& White, 1989). The structure could only be solved in $P 2_{1}$, but refinement showed clearly that $P 2_{1} / m$ was the correct space group. The function minimized was $\sum w(\Delta F)^{2}$, where $w=1\left[\sigma(F)^{2}+0.001 F^{2}\right]$ and σ was obtained from counting statistics. All non- H atoms were refined

0108-2701/92/020361-02\$03.00
with anisotropic thermal parameters. All of the H atoms were observed in a difference Fourier synthesis. Their positions were idealized to $s p^{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ or $s p^{3}\left[\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right]$ geometry, and they were allowed to ride on the C atom to which they were attached ($\mathrm{C}-\mathrm{H}=0.96 \AA$) with fixed isotropic thermal parameters. Full-matrix least-squares refinement of 94 parameters for 1283 reflections gave a final $R=$ $0.027, w R=0.051$ and a goodness of fit of 1.38. The largest Δ / σ was 0.002 . A final difference synthesis had a maximum peak of 0.32 e \AA^{-3}, located between $\mathrm{C}(102)$ and $\mathrm{C}(103)$ of the $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ ring, and a minimum hole of -0.65 e $\AA^{-3} 1.0 \AA$ from Ru. Scattering factors for neutral atoms, corrected for the real and imaginary parts of the anomalous dispersion, were obtained from International Tables for X-ray Crystallography (1974, Vol. IV). Positional parameters are listed in Table 1,* selected bond lengths and angles in Table 2 and an ORTEP (Johnson, 1976) diagram of the structure is shown in Fig. 1.

Related literature. The structure of $\left[\left\{\eta-\mathrm{C}_{5}-\right.\right.$ $\left.\left.\left(\mathrm{CH}_{3}\right)_{s}\right\} \mathrm{RuCl}(\mu-\mathrm{Cl})\right]_{2}$ is similar to its Rh analogue (Koelle \& Kossakowski, 1989; Churchill, Julis \& Rotella, 1977). No other $\left[\eta-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right.$] derivatives of $\mathrm{Ru}^{\text {III }}$ have been structurally characterized. The structures of a number of $\mathrm{Ru}^{1 \mathrm{II}}$ derivatives, notably $\left[\left\{\eta-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right\} \mathrm{Ru}\left(\mu_{3}-\mathrm{Cl}\right)\right]_{4}$ (Fagan, Mahoney, Calabrese \& Williams, 1990) and $\quad \eta-\mathrm{C}_{5}(\mathrm{C}-$ $\left.\left.\mathrm{H}_{3}\right)_{5}\right] \mathrm{RuCl}_{2}\left(\eta^{2}: \eta^{4}-\mu_{2}-\mathrm{C}_{4} \mathrm{H}_{4}\right) \mathrm{Ru}\left[\eta-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right] \quad$ (Campion, Heyn \& Tilley, 1990), have been determined.

[^0](C) 1992 International Union of Crystallography

Table 1. Atomic coordinates of the non-H atoms with e.s.d.'s in parentheses

* y coordinate fixed by symmetry.

Fig. 1. Structure of $\left[\eta-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{s}\right] \mathrm{RuCl}_{2}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)$.

Table 2. Important interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Ru}-\mathrm{Cl}$	$2.386(1)$	$\mathrm{Cl}-\mathrm{Ru}-\mathrm{Cl}(a)$	$100.21(5)$
$\mathrm{Ru}-\mathrm{N}$	$2.150(5)$	$\mathrm{Cl}-\mathrm{Ru}-\mathrm{N}$	$88.28(9)$
$\mathrm{Ru}-\mathrm{C}(1)$	$2.227(6)$	$\mathrm{Cl}-\mathrm{Ru}-\mathrm{Cp}^{*}$	$123.4(2)$
$\mathrm{Ru}-\mathrm{C}(2)$	$2.195(4)$	$\mathrm{N}-\mathrm{Ru}-\mathrm{Cp}^{*}$	$123.6(2)$
$\mathrm{Ru}-\mathrm{C}(3)$	$2.163(4)$		

Cp^{*} is the centroid of the C_{5} ring of the $\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{s}$ group [obtained by averaging the coordinates of $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(2) a, \mathrm{C}(3)$ and $\mathrm{C}(3) a$].

We acknowledge financial support by the Natural Sciences and Engineering Research Council of Canada and the Petroleum Research Fund administered by the American Chemical Society.

References

Bottomley, F., McKenzie-Boone, J. \& Sutton, P. A. (1991). In preparation.
Campion, B. K., Heyn, R. H. \& Tilley, T. D. (1990). Organometallics, 9, 1106-1112.
Churchill, M. R., Julis, S. A. \& Rotella, F. J. (1977). Inorg. Chem. 16, 1137-1141.
Fagan, P. J., Mahoney, W. S., Calabrese, J. C. \& Willlams, I. D. (1990). Organometallics, 9, 1843-1852.

Gabe, E. J., Le Page, Y., Charland, J. P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Koelle, U. \& Kossakowski, J. (1989). J. Organomet. Chem. 362, 383-398.
Oshima, N., Suzuki, H. \& Moro-oka, Y. (1984). Chem. Lett. pp. 1161-1164.
Tilley, T. D., Grubbs, R. H. \& Bercaw, J. E. (1984). Organometallics, 3, 274-278.

Acta Cryst. (1992). C48, 362-364

Structure of trans-Di- μ-chloro-dichlorobis(triphenylphosphite)dipalladium

By Warren J. Grigsby and Brian K. Nicholson
School of Science and Technology, University of Waikato, Hamilton, New Zealand

(Received 18 June 1991; accepted 14 August 1991)

Abstract. $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P}\right)_{2}\right], M_{r}=975.19$, monoclinic, $P 2_{1} / c, \quad a=10.034$ (2), $\quad b=16.278$ (2), $\quad c=$ 13.129 (2) $\AA, \quad \beta=112.04(1)^{\circ}, \quad V=1987.5(5) \AA^{3}$, $Z=2, \quad D_{x}=1.63 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Мо $K \alpha)=0.7107 \AA$, $\mu(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=12.77 \mathrm{~cm}^{-1}, \quad F(000)=968, T=294 \mathrm{~K}$, $R=0.0504$ for 1811 unique observed reflections, $I>$ $2 \sigma(I)$. The structure consists of centrosymmetric dimers, with the $\mathrm{Pd}^{\mathrm{II}}$ ions joined by unsymmetrical double Cl^{-}bridges. A terminal Cl^{-}and a $\mathrm{P}(\mathrm{OPh})_{3}$

0108-2701/92/020362-03\$03.00
ligand complete the near square-planar coordination of each Pd. Bond lengths: Pd-P 2.187 (3), Pd$\mathrm{Cl}($ terminal $) 2.269$ (3), $\mathrm{Pd}-\mathrm{Cl}($ bridging, trans to P$)$ 2.413 (2), $\mathrm{Pd}-\mathrm{Cl}($ bridging, trans to Cl$) 2.309$ (2) \AA.

Experimental. Compound isolated from the reaction of orthomanganated triphenylphosphite, $(\mathrm{PhO})_{2}-$ $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\right) \mathrm{PMn}(\mathrm{CO})_{4}$ with PdCl_{2}; a more direct synthesis is available (Chatt \& Venanzi, 1957). Plate-like
© 1992 International Union of Crystallography

[^0]: * Lists of H-atom positions, anisotropic thermal parameters, structure-factor amplitudes, further bond distances and angles and a labelled diagram of the molecule have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54510 (13 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

